Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Denoising in FPGA using Generic Risk Estimation (2111.08297v3)

Published 16 Nov 2021 in eess.IV

Abstract: The generic risk estimator addresses the problem of denoising images corrupted by additive white noise without placing any restriction on the statistical distribution of the noise. In this paper, we discuss an efficient FPGA implementation of this algorithm. We use the undecimated Haar wavelet transform with shrinkage parameters for each sub-band as the denoising function. The computational complexity and memory requirement of the algorithm is first analyzed. To optimize the performance, a combination of convolution and recursion is employed to realize Haar filter bank and gradient descent algorithm is used to find the shrinkage parameters. A fully pipelined and parallel architecture is developed to achieve high throughput. The proposed design achieves an execution time of 3.5ms for an image of size 512x512. We also show that the recursive implementation of Haar wavelet is more expensive than the direct implementation in terms of hardware utilization.

Citations (1)

Summary

We haven't generated a summary for this paper yet.