Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning a Generic Adaptive Wavelet Shrinkage Function for Denoising (1910.09234v3)

Published 21 Oct 2019 in eess.IV, cs.CV, and cs.LG

Abstract: The rise of machine learning in image processing has created a gap between trainable data-driven and classical model-driven approaches: While learning-based models often show superior performance, classical ones are often more transparent. To reduce this gap, we introduce a generic wavelet shrinkage function for denoising which is adaptive to both the wavelet scales as well as the noise standard deviation. It is inferred from trained results of a tightly parametrised function which is inherited from nonlinear diffusion. Our proposed shrinkage function is smooth and compact while only using two parameters. In contrast to many existing shrinkage functions, it is able to enhance image structures by amplifying wavelet coefficients. Experiments show that it outperforms classical shrinkage functions by a significant margin.

Citations (4)

Summary

We haven't generated a summary for this paper yet.