Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Switching Recurrent Kalman Networks (2111.08291v1)

Published 16 Nov 2021 in cs.LG, cs.AI, and eess.SP

Abstract: Forecasting driving behavior or other sensor measurements is an essential component of autonomous driving systems. Often real-world multivariate time series data is hard to model because the underlying dynamics are nonlinear and the observations are noisy. In addition, driving data can often be multimodal in distribution, meaning that there are distinct predictions that are likely, but averaging can hurt model performance. To address this, we propose the Switching Recurrent Kalman Network (SRKN) for efficient inference and prediction on nonlinear and multi-modal time-series data. The model switches among several Kalman filters that model different aspects of the dynamics in a factorized latent state. We empirically test the resulting scalable and interpretable deep state-space model on toy data sets and real driving data from taxis in Porto. In all cases, the model can capture the multimodal nature of the dynamics in the data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.