Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Score-Based Generative Models for Robust Channel Estimation (2111.08177v2)

Published 16 Nov 2021 in eess.SP and cs.LG

Abstract: Channel estimation is a critical task in digital communications that greatly impacts end-to-end system performance. In this work, we introduce a novel approach for multiple-input multiple-output (MIMO) channel estimation using score-based generative models. Our method uses a deep neural network that is trained to estimate the gradient of the log-prior of wireless channels at any point in high-dimensional space, and leverages this model to solve channel estimation via posterior sampling. We train a score-based model on channel realizations from the CDL-D model for two antenna spacings and show that the approach leads to competitive in- and out-of-distribution performance when compared to generative adversarial network (GAN) and compressed sensing (CS) methods. When tested on CDL-D channels, the approach leads to a gain of at least $5$ dB in channel estimation error compared to GAN methods in-distribution at $\lambda/2$ antenna spacing. When tested on CDL-C channels which are never seen during training or fine-tuned on, the approach leads to end-to-end coded performance gains of up to $3$ dB compared to CS methods and losses of only $0.5$ dB compared to ideal channel knowledge.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com