Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Extensive Study of User Identification via Eye Movements across Multiple Datasets (2111.05901v1)

Published 10 Nov 2021 in cs.CV and cs.AI

Abstract: Several studies have reported that biometric identification based on eye movement characteristics can be used for authentication. This paper provides an extensive study of user identification via eye movements across multiple datasets based on an improved version of method originally proposed by George and Routray. We analyzed our method with respect to several factors that affect the identification accuracy, such as the type of stimulus, the IVT parameters (used for segmenting the trajectories into fixation and saccades), adding new features such as higher-order derivatives of eye movements, the inclusion of blink information, template aging, age and gender.We find that three methods namely selecting optimal IVT parameters, adding higher-order derivatives features and including an additional blink classifier have a positive impact on the identification accuracy. The improvements range from a few percentage points, up to an impressive 9 % increase on one of the datasets.

Citations (9)

Summary

We haven't generated a summary for this paper yet.