On the Finite-Sample Performance of Measure Transportation-Based Multivariate Rank Tests (2111.04705v2)
Abstract: Extending to dimension 2 and higher the dual univariate concepts of ranks and quantiles has remained an open problem for more than half a century. Based on measure transportation results, a solution has been proposed recently under the name center-outward ranks and quantiles which, contrary to previous proposals, enjoys all the properties that make univariate ranks a successful tool for statistical inference. Just as their univariate counterparts (to which they reduce in dimension one), center-outward ranks allow for the construction of distribution-free and asymptotically efficient tests for a variety of problems where the density of some noise or innovation remains unspecified. The actual implementation of these tests involves the somewhat arbitrary choice of a grid. While the asymptotic impact of that choice is nil, its finite-sample consequences are not. In this note, we investigate the finite-sample impact of that choice in the typical context of the multivariate two-sample location problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.