Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Machine Learning Product State Distributions from Initial Reactant States for a Reactive Atom-Diatom Collision System (2111.03563v1)

Published 5 Nov 2021 in physics.chem-ph and cs.LG

Abstract: A machine learned (ML) model for predicting product state distributions from specific initial states (state-to-distribution or STD) for reactive atom-diatom collisions is presented and quantitatively tested for the N($4$S)+O$_{2}$(X$3 \Sigma_{\rm g}{-}$) $\rightarrow$ NO(X$2\Pi$) +O($3$P) reaction. The reference data set for training the neural network (NN) consists of final state distributions determined from explicit quasi-classical trajectory (QCT) simulations for $\sim 2000$ initial conditions. Overall, the prediction accuracy as quantified by the root-mean-squared difference $(\sim 0.003)$ and the $R2$ $(\sim 0.99)$ between the reference QCT and predictions of the STD model is high for the test set and off-grid state specific initial conditions and for initial conditions drawn from reactant state distributions characterized by translational, rotational and vibrational temperatures. Compared with a more coarse grained distribution-to-distribution (DTD) model evaluated on the same initial state distributions, the STD model shows comparable performance with the additional benefit of the state resolution in the reactant preparation. Starting from specific initial states also leads to a more diverse range of final state distributions which requires a more expressive neural network to be used compared with DTD. Direct comparison between explicit QCT simulations, the STD model, and the widely used Larsen-Borgnakke (LB) model shows that the STD model is quantitative whereas the LB model is qualitative at best for rotational distributions $P(j')$ and fails for vibrational distributions $P(v')$. As such the STD model can be well-suited for simulating nonequilibrium high-speed flows, e.g., using the direct simulation Monte Carlo method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. M. Meuwly, Chem. Res. 121, 10218 (2021).
  2. I. D. Boyd and T. E. Schwartzntruber, Nonequilibrium Gas Dynamics and Molecular Simulation (Cambridge University Press, New York, 2017).
  3. C. Borgnakke and P. S. Larsen, J. Comput. Phys. 18, 405 (1975).
  4. D. G. Truhlar and J. T. Muckerman, in Atom - Molecule Collision Theory, edited by R. B. Bernstein (Springer US, 1979) pp. 505–566.
  5. N. E. Henriksen and F. Y. Hansen, Theories of Molecular Reaction Dynamics (Oxford, 2011).
  6. Y.-R. Luo and J. Kerr, CRC handb. chem. phys. 89, 89 (2012).
  7. X. Glorot and Y. Bengio, in Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (2010) pp. 249–256.
  8. D. Kingma and J. Ba, arXiv preprint arXiv:1412.6980  (2014).
  9. N. Singh and T. Schwartzentruber, Proc. Natl. Acad. Sci. 115, 47 (2018).
  10. G. A. Bird, NASA STI/Recon Technical Report A 76 (1976).
Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube