Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Intelligent Load Balancing in Data Centers (2110.15788v1)

Published 27 Oct 2021 in cs.DC, cs.AI, and cs.NI

Abstract: Network load balancers are important components in data centers to provide scalable services. Workload distribution algorithms are based on heuristics, e.g., Equal-Cost Multi-Path (ECMP), Weighted-Cost Multi-Path (WCMP) or naive ML algorithms, e.g., ridge regression. Advanced ML-based approaches help achieve performance gain in different networking and system problems. However, it is challenging to apply ML algorithms on networking problems in real-life systems. It requires domain knowledge to collect features from low-latency, high-throughput, and scalable networking systems, which are dynamic and heterogenous. This paper proposes Aquarius to bridge the gap between ML and networking systems and demonstrates its usage in the context of network load balancers. This paper demonstrates its ability of conducting both offline data analysis and online model deployment in realistic systems. The results show that the ML model trained and deployed using Aquarius improves load balancing performance yet they also reveals more challenges to be resolved to apply ML for networking systems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.