Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Competitive Multi-Agent Load Balancing with Adaptive Policies in Wireless Networks (2110.07050v1)

Published 13 Oct 2021 in cs.NI

Abstract: Using Machine Learning (ML) techniques for the next generation wireless networks have shown promising results in the recent years, due to high learning and adaptation capability of ML algorithms. More specifically, ML techniques have been used for load balancing in Self-Organizing Networks (SON). In the context of load balancing and ML, several studies propose network management automation (NMA) from the perspective of a single and centralized agent. However, a single agent domain does not consider the interaction among the agents. In this paper, we propose a more realistic load balancing approach using novel Multi-Agent Deep Deterministic Policy Gradient with Adaptive Policies (MADDPG-AP) scheme that considers throughput, resource block utilization and latency in the network. We compare our proposal with a single-agent RL algorithm named Clipped Double Q-Learning (CDQL) . Simulation results reveal a significant improvement in latency, packet loss ratio and convergence time

Citations (6)

Summary

We haven't generated a summary for this paper yet.