Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Data Driven based Dynamic Correction Prediction Model for NOx Emission of Coal Fired Boiler (2110.15600v2)

Published 29 Oct 2021 in eess.SY, cs.SY, and eess.SP

Abstract: The real-time prediction of NOx emissions is of great significance for pollutant emission control and unit operation of coal-fired power plants. Aiming at dealing with the large time delay and strong nonlinear characteristics of the combustion process, a dynamic correction prediction model considering the time delay is proposed. First, the maximum information coefficient (MIC) is used to calculate the delay time between related parameters and NOx emissions, and the modeling data set is reconstructed; then, an adaptive feature selection algorithm based on Lasso and ReliefF is constructed to filter out the high correlation with NOx emissions. Parameters; Finally, an extreme learning machine (ELM) model combined with error correction was established to achieve the purpose of dynamically predicting the concentration of nitrogen oxides. Experimental results based on actual data show that the same variable has different delay times under load conditions such as rising, falling, and steady; and there are differences in model characteristic variables under different load conditions; dynamic error correction strategies effectively improve modeling accuracy; proposed The prediction error of the algorithm under different working conditions is less than 2%, which can accurately predict the NOx concentration at the combustion outlet, and provide guidance for NOx emission monitoring and combustion process optimization.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com