Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Response-based Distillation for Incremental Object Detection (2110.13471v1)

Published 26 Oct 2021 in cs.CV

Abstract: Traditional object detection are ill-equipped for incremental learning. However, fine-tuning directly on a well-trained detection model with only new data will leads to catastrophic forgetting. Knowledge distillation is a straightforward way to mitigate catastrophic forgetting. In Incremental Object Detection (IOD), previous work mainly focuses on feature-level knowledge distillation, but the different response of detector has not been fully explored yet. In this paper, we propose a fully response-based incremental distillation method focusing on learning response from detection bounding boxes and classification predictions. Firstly, our method transferring category knowledge while equipping student model with the ability to retain localization knowledge during incremental learning. In addition, we further evaluate the qualities of all locations and provides valuable response by adaptive pseudo-label selection (APS) strategies. Finally, we elucidate that knowledge from different responses should be assigned with different importance during incremental distillation. Extensive experiments conducted on MS COCO demonstrate significant advantages of our method, which substantially narrow the performance gap towards full training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tao Feng (153 papers)
  2. Mang Wang (14 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.