Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Watermarked Adversarial Texts (2110.12948v1)

Published 25 Oct 2021 in cs.CR and cs.CL

Abstract: Adversarial example generation has been a hot spot in recent years because it can cause deep neural networks (DNNs) to misclassify the generated adversarial examples, which reveals the vulnerability of DNNs, motivating us to find good solutions to improve the robustness of DNN models. Due to the extensiveness and high liquidity of natural language over the social networks, various natural language based adversarial attack algorithms have been proposed in the literature. These algorithms generate adversarial text examples with high semantic quality. However, the generated adversarial text examples may be maliciously or illegally used. In order to tackle with this problem, we present a general framework for generating watermarked adversarial text examples. For each word in a given text, a set of candidate words are determined to ensure that all the words in the set can be used to either carry secret bits or facilitate the construction of adversarial example. By applying a word-level adversarial text generation algorithm, the watermarked adversarial text example can be finally generated. Experiments show that the adversarial text examples generated by the proposed method not only successfully fool advanced DNN models, but also carry a watermark that can effectively verify the ownership and trace the source of the adversarial examples. Moreover, the watermark can still survive after attacked with adversarial example generation algorithms, which has shown the applicability and superiority.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mingjie Li (68 papers)
  2. Hanzhou Wu (36 papers)
  3. Xinpeng Zhang (86 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.