Papers
Topics
Authors
Recent
Search
2000 character limit reached

The diameter of caterpillar associahedra

Published 25 Oct 2021 in math.CO and cs.DS | (2110.12928v1)

Abstract: The caterpillar associahedron $\mathcal{A}(G)$ is a polytope arising from the rotation graph of search trees on a caterpillar tree $G$, generalizing the rotation graph of binary search trees (BSTs) and thus the conventional associahedron. We show that the diameter of $\mathcal{A}(G)$ is $\Theta(n + m \cdot (H+1))$, where $n$ is the number of vertices, $m$ is the number of leaves, and $H$ is the entropy of the leaf distribution of $G$. Our proofs reveal a strong connection between caterpillar associahedra and searching in BSTs. We prove the lower bound using Wilber's first lower bound for dynamic BSTs, and the upper bound by reducing the problem to searching in static BSTs.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.