Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The diameter of caterpillar associahedra (2110.12928v1)

Published 25 Oct 2021 in math.CO and cs.DS

Abstract: The caterpillar associahedron $\mathcal{A}(G)$ is a polytope arising from the rotation graph of search trees on a caterpillar tree $G$, generalizing the rotation graph of binary search trees (BSTs) and thus the conventional associahedron. We show that the diameter of $\mathcal{A}(G)$ is $\Theta(n + m \cdot (H+1))$, where $n$ is the number of vertices, $m$ is the number of leaves, and $H$ is the entropy of the leaf distribution of $G$. Our proofs reveal a strong connection between caterpillar associahedra and searching in BSTs. We prove the lower bound using Wilber's first lower bound for dynamic BSTs, and the upper bound by reducing the problem to searching in static BSTs.

Citations (6)

Summary

We haven't generated a summary for this paper yet.