Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Diameter of Tree Associahedra (1803.11427v1)

Published 30 Mar 2018 in math.CO, cs.DM, and cs.DS

Abstract: We consider a natural notion of search trees on graphs, which we show is ubiquitous in various areas of discrete mathematics and computer science. Search trees on graphs can be modified by local operations called rotations, which generalize rotations in binary search trees. The rotation graph of search trees on a graph $G$ is the skeleton of a polytope called the graph associahedron of $G$. We consider the case where the graph $G$ is a tree. We construct a family of trees $G$ on $n$ vertices and pairs of search trees on $G$ such that the minimum number of rotations required to transform one search tree into the other is $\Omega (n\log n)$. This implies that the worst-case diameter of tree associahedra is $\Theta (n\log n)$, which answers a question from Thibault Manneville and Vincent Pilaud. The proof relies on a notion of projection of a search tree which may be of independent interest.

Citations (12)

Summary

We haven't generated a summary for this paper yet.