Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Constructing high-fidelity halo merger trees in AbacusSummit (2110.11409v3)

Published 21 Oct 2021 in astro-ph.CO

Abstract: Tracking the formation and evolution of dark matter haloes is a critical aspect of any analysis of cosmological $N$-body simulations. In particular, the mass assembly of a halo and its progenitors, encapsulated in the form of its merger tree, serves as a fundamental input for constructing semi-analytic models of galaxy formation and, more generally, for building mock catalogues that emulate galaxy surveys. We present an algorithm for constructing halo merger trees from AbacusSummit, the largest suite of cosmological $N$-body simulations performed to date consisting of nearly 60 trillion particles, and which has been designed to meet the Cosmological Simulation Requirements of the Dark Energy Spectroscopic Instrument (DESI) survey. Our method tracks the cores of haloes to determine associations between objects across multiple timeslices, yielding lists of halo progenitors and descendants for the several tens of billions of haloes identified across the entire suite. We present an application of these merger trees as a means to enhance the fidelity of AbacusSummit halo catalogues by flagging and "merging" haloes deemed to exhibit non-monotonic past merger histories. We show that this cleaning technique identifies portions of the halo population that have been deblended due to choices made by the halo finder, but which could have feasibly been part of larger aggregate systems. We demonstrate that by cleaning halo catalogues in this post-processing step, we remove potentially unphysical features in the default halo catalogues, leaving behind a more robust halo population that can be used to create highly-accurate mock galaxy realisations from AbacusSummit.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube