Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning quantum dynamics with latent neural ODEs (2110.10721v2)

Published 20 Oct 2021 in quant-ph and cs.LG

Abstract: The core objective of machine-assisted scientific discovery is to learn physical laws from experimental data without prior knowledge of the systems in question. In the area of quantum physics, making progress towards these goals is significantly more challenging due to the curse of dimensionality as well as the counter-intuitive nature of quantum mechanics. Here, we present the QNODE, a latent neural ODE trained on expectation values of closed and open quantum systems dynamics. It can learn to generate such measurement data and extrapolate outside of its training region that satisfies the von Neumann and time-local Lindblad master equations for closed and open quantum systems respectively in an unsupervised means. Furthermore, the QNODE rediscovers quantum mechanical laws such as the Heisenberg's uncertainty principle in a data-driven way, without any constraint or guidance. Additionally, we show that trajectories that are generated from the QNODE that are close in its latent space have similar quantum dynamics while preserving the physics of the training system.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.