Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Higgs bundles and flat connections over compact Sasakian manifolds, II: quasi-regular bundles (2110.10644v2)

Published 20 Oct 2021 in math.DG, math-ph, math.AG, and math.MP

Abstract: In this continuation of \cite{BK} we investigate the non-abelian Hodge correspondence on compact Sasakian manifolds with emphasis on the quasi-regular case. On quasi-regular Sasakian manifolds, we introduce the notions of quasi-regularity and regularity of basic vector bundles. These notions are useful in relating the vector bundles over a quasi-regular Sasakian manifold with the orbibundles over the orbifold defined by the orbits of the Reeb foliation of the Sasakian manifold. We note that the non-abelian Hodge correspondence on quasi-regular Sasakian manifolds gives a canonical correspondence between the semi-simple representations of the orbifold fundamental groups and the Higgs orbibundles on locally cyclic complex orbifolds admitting Hodge metrics. Under the quasi-regularity of Sasakian manifolds and vector bundles, we extend this correspondence to one between the flat bundles and the basic Higgs bundles. We also prove a Sasakian analogue of the characterization of numerically flat bundles given by Demailly, Peternell and Schneider.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.