Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probabilistic Semantic Data Association for Collaborative Human-Robot Sensing (2110.09621v3)

Published 18 Oct 2021 in cs.RO

Abstract: Humans cannot always be treated as oracles for collaborative sensing. Robots thus need to maintain beliefs over unknown world states when receiving semantic data from humans, as well as account for possible discrepancies between human-provided data and these beliefs. To this end, this paper introduces the problem of semantic data association (SDA) in relation to conventional data association problems for sensor fusion. It then develops a novel probabilistic semantic data association (PSDA) algorithm to rigorously address SDA in general settings, unlike previous work on semantic data fusion which developed heuristic techniques for specific settings. PSDA is further incorporated into a recursive hybrid Bayesian data fusion scheme which uses Gaussian mixture priors for object states and softmax functions for semantic human sensor data likelihoods. Simulations of a multi-object search task show that PSDA enables robust collaborative state estimation under a wide range of conditions where semantic human sensor data can be erroneous or contain significant reference ambiguities.

Citations (7)

Summary

We haven't generated a summary for this paper yet.