A central limit theorem concerning uncertainty in estimates of individual admixture (2110.08348v2)
Abstract: The concept of individual admixture (IA) assumes that the genome of individuals is composed of alleles inherited from $K$ ancestral populations. Each copy of each allele has the same chance $q_k$ to originate from population $k$, and together with the allele frequencies $p$ in all populations at all $M$ markers, comprises the admixture model. Here, we assume a supervised scheme, i.e.\ allele frequencies $p$ are given through a reference database of size $N$, and $q$ is estimated via maximum likelihood for a single sample. We study laws of large numbers and central limit theorems describing effects of finiteness of both, $M$ and $N$, on the estimate of $q$. We recall results for the effect of finite $M$, and provide a central limit theorem for the effect of finite $N$, introduce a new way to express the uncertainty in estimates in standard barplots, give simulation results, and discuss applications in forensic genetics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.