Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Low-rank Matrix Recovery With Unknown Correspondence (2110.07959v2)

Published 15 Oct 2021 in cs.LG, cs.IR, and stat.ML

Abstract: We study a matrix recovery problem with unknown correspondence: given the observation matrix $M_o=[A,\tilde P B]$, where $\tilde P$ is an unknown permutation matrix, we aim to recover the underlying matrix $M=[A,B]$. Such problem commonly arises in many applications where heterogeneous data are utilized and the correspondence among them are unknown, e.g., due to privacy concerns. We show that it is possible to recover $M$ via solving a nuclear norm minimization problem under a proper low-rank condition on $M$, with provable non-asymptotic error bound for the recovery of $M$. We propose an algorithm, $\text{M}3\text{O}$ (Matrix recovery via Min-Max Optimization) which recasts this combinatorial problem as a continuous minimax optimization problem and solves it by proximal gradient with a Max-Oracle. $\text{M}3\text{O}$ can also be applied to a more general scenario where we have missing entries in $M_o$ and multiple groups of data with distinct unknown correspondence. Experiments on simulated data, the MovieLens 100K dataset and Yale B database show that $\text{M}3\text{O}$ achieves state-of-the-art performance over several baselines and can recover the ground-truth correspondence with high accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.