Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Modeling of Social Concepts Evoked by Art Images as Multimodal Frames (2110.07420v1)

Published 14 Oct 2021 in cs.CV, cs.CL, cs.DL, and cs.SI

Abstract: Social concepts referring to non-physical objects--such as revolution, violence, or friendship--are powerful tools to describe, index, and query the content of visual data, including ever-growing collections of art images from the Cultural Heritage (CH) field. While much progress has been made towards complete image understanding in computer vision, automatic detection of social concepts evoked by images is still a challenge. This is partly due to the well-known semantic gap problem, worsened for social concepts given their lack of unique physical features, and reliance on more unspecific features than concrete concepts. In this paper, we propose the translation of recent cognitive theories about social concept representation into a software approach to represent them as multimodal frames, by integrating multisensory data. Our method focuses on the extraction, analysis, and integration of multimodal features from visual art material tagged with the concepts of interest. We define a conceptual model and present a novel ontology for formally representing social concepts as multimodal frames. Taking the Tate Gallery's collection as an empirical basis, we experiment our method on a corpus of art images to provide a proof of concept of its potential. We discuss further directions of research, and provide all software, data sources, and results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.