Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Offline Reinforcement Learning with Soft Behavior Regularization (2110.07395v1)

Published 14 Oct 2021 in cs.LG

Abstract: Most prior approaches to offline reinforcement learning (RL) utilize \textit{behavior regularization}, typically augmenting existing off-policy actor critic algorithms with a penalty measuring divergence between the policy and the offline data. However, these approaches lack guaranteed performance improvement over the behavior policy. In this work, we start from the performance difference between the learned policy and the behavior policy, we derive a new policy learning objective that can be used in the offline setting, which corresponds to the advantage function value of the behavior policy, multiplying by a state-marginal density ratio. We propose a practical way to compute the density ratio and demonstrate its equivalence to a state-dependent behavior regularization. Unlike state-independent regularization used in prior approaches, this \textit{soft} regularization allows more freedom of policy deviation at high confidence states, leading to better performance and stability. We thus term our resulting algorithm Soft Behavior-regularized Actor Critic (SBAC). Our experimental results show that SBAC matches or outperforms the state-of-the-art on a set of continuous control locomotion and manipulation tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Haoran Xu (77 papers)
  2. Xianyuan Zhan (47 papers)
  3. Jianxiong Li (31 papers)
  4. Honglei Yin (3 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.