Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Lifting couplings in Wasserstein spaces (2110.06591v4)

Published 13 Oct 2021 in math.CT, cs.LO, math.MG, and math.PR

Abstract: This paper makes mathematically precise the idea that conditional probabilities are analogous to path liftings in geometry. The idea of lifting is modelled in terms of the category-theoretic concept of a lens, which can be interpreted as a consistent choice of arrow liftings. The category we study is the one of probability measures over a given standard Borel space, with morphisms given by the couplings, or transport plans. The geometrical picture is even more apparent once we equip the arrows of the category with weights, which one can interpret as "lengths" or "costs", forming a so-called weighted category, which unifies several concepts of category theory and metric geometry. Indeed, we show that the weighted version of a lens is tightly connected to the notion of submetry in geometry. Every weighted category gives rise to a pseudo-quasimetric space via optimization over the arrows. In particular, Wasserstein spaces can be obtained from the weighted categories of probability measures and their couplings, with the weight of a coupling given by its cost. In this case, conditionals allow one to form weighted lenses, which one can interpret as "lifting transport plans, while preserving their cost".

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com