Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CoarSAS2hvec: Heterogeneous Information Network Embedding with Balanced Network Sampling (2110.05820v2)

Published 12 Oct 2021 in cs.LG

Abstract: Heterogeneous information network (HIN) embedding aims to find the representations of nodes that preserve the proximity between entities of different nature. A family of approaches that are wildly adopted applies random walk to generate a sequence of heterogeneous context, from which the embedding is learned. However, due to the multipartite graph structure of HIN, hub nodes tend to be over-represented in the sampled sequence, giving rise to imbalanced samples of the network. Here we propose a new embedding method CoarSAS2hvec. The self-avoid short sequence sampling with the HIN coarsening procedure (CoarSAS) is utilized to better collect the rich information in HIN. An optimized loss function is used to improve the performance of the HIN structure embedding. CoarSAS2hvec outperforms nine other methods in two different tasks on four real-world data sets. The ablation study confirms that the samples collected by CoarSAS contain richer information of the network compared with those by other methods, which is characterized by a higher information entropy. Hence, the traditional loss function applied to samples by CoarSAS can also yield improved results. Our work addresses a limitation of the random-walk-based HIN embedding that has not been emphasized before, which can shed light on a range of problems in HIN analyses.

Citations (8)

Summary

We haven't generated a summary for this paper yet.