Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HAHE: Hierarchical Attentive Heterogeneous Information Network Embedding (1902.01475v2)

Published 31 Jan 2019 in cs.SI and cs.LG

Abstract: Heterogeneous information network (HIN) embedding has recently attracted much attention due to its effectiveness in dealing with the complex heterogeneous data. Meta path, which connects different object types with various semantic meanings, is widely used by existing HIN embedding works. However, several challenges have not been addressed so far. First, different meta paths convey different semantic meanings, while existing works assume that all nodes share same weights for meta paths and ignore the personalized preferences of different nodes on different meta paths. Second, given a meta path, nodes in HIN are connected by path instances while existing works fail to fully explore the differences between path instances that reflect nodes' preferences in the semantic space. rTo tackle the above challenges, we propose aHierarchical Attentive Heterogeneous information network Embedding (HAHE) model to capture the personalized preferences on meta paths and path instances in each semantic space. As path instances are based on a particular meta path, a hierarchical attention mechanism is naturally utilized to model the personalized preference on meta paths and path instances. Extensive experiments on several real-world datasets show that our proposed \model model significantly outperforms the state-of-the-art methods in terms of various data mining tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sheng Zhou (186 papers)
  2. Jiajun Bu (52 papers)
  3. Xin Wang (1307 papers)
  4. Jiawei Chen (161 papers)
  5. Can Wang (156 papers)
Citations (22)