Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zig-Zag Modules: Cosheaves and K-Theory (2110.04591v4)

Published 9 Oct 2021 in math.AT, cs.CG, and math.CT

Abstract: Persistence modules have a natural home in the setting of stratified spaces and constructible cosheaves. In this article, we first give explicit constructible cosheaves for common data-motivated persistence modules, namely, for modules that arise from zig-zag filtrations (including monotone filtrations), and for augmented persistence modules (which encode the data of instantaneous events). We then identify an equivalence of categories between a particular notion of zig-zag modules and the combinatorial entrance path category on stratified $\mathbb{R}$. Finally, we compute the algebraic $K$-theory of generalized zig-zag modules and describe connections to both Euler curves and $K_0$ of the monoid of persistence diagrams as described by Bubenik and Elchesen.

Citations (2)

Summary

We haven't generated a summary for this paper yet.