Papers
Topics
Authors
Recent
2000 character limit reached

Left regular representations of Garside categories I. C*-algebras and groupoids

Published 9 Oct 2021 in math.OA, math.DS, and math.GR | (2110.04501v3)

Abstract: We initiate the study of C*-algebras and groupoids arising from left regular representations of Garside categories, a notion which originated from the study of Braid groups. Every higher rank graph is a Garside category in a natural way. We develop a general classification result for closed invariant subspaces of our groupoids as well as criteria for topological freeness and local contractiveness, properties which are relevant for the structure of the corresponding C*-algebras. Our results provide a conceptual explanation for previous results on gauge-invariant ideals of higher rank graph C*-algebras. As another application, we give a complete analysis of the ideal structures of C*-algebras generated by left regular representations of Artin-Tits monoids.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

  1. Xin Li 

Collections

Sign up for free to add this paper to one or more collections.