Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAPA: Multi-Accelerator Pattern Allocation Policy for Multi-Tenant GPU Servers (2110.03214v1)

Published 7 Oct 2021 in cs.DC

Abstract: Multi-accelerator servers are increasingly being deployed in shared multi-tenant environments (such as in cloud data centers) in order to meet the demands of large-scale compute-intensive workloads. In addition, these accelerators are increasingly being inter-connected in complex topologies and workloads are exhibiting a wider variety of inter-accelerator communication patterns. However, existing allocation policies are ill-suited for these emerging use-cases. Specifically, this work identifies that multi-accelerator workloads are commonly fragmented leading to reduced bandwidth and increased latency for inter-accelerator communication. We propose Multi-Accelerator Pattern Allocation (MAPA), a graph pattern mining approach towards providing generalized allocation support for allocating multi-accelerator workloads on multi-accelerator servers. We demonstrate that MAPA is able to improve the execution time of multi-accelerator workloads and that MAPA is able to provide generalized benefits across various accelerator topologies. Finally, we demonstrate a speedup of 12.4% for 75th percentile of jobs with the worst case execution time reduced by up to 35% against baseline policy using MAPA.

Citations (14)

Summary

We haven't generated a summary for this paper yet.