Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal approximation properties of shallow quadratic neural networks (2110.01536v2)

Published 4 Oct 2021 in math.NA and cs.NA

Abstract: In this paper we study shallow neural network functions which are linear combinations of compositions of activation and quadratic functions, replacing standard affine linear functions, often called neurons. We show the universality of this approximation and prove convergence rates results based on the theory of wavelets and statistical learning. We show for simple test cases that this ansatz requires a smaller numbers of neurons than standard affine linear neural networks. Moreover, we investigate the efficiency of this approach for clustering tasks with the MNIST data set. Similar observations are made when comparing deep (multi-layer) networks.

Summary

We haven't generated a summary for this paper yet.