Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Multiplicative Relations in Neural Networks (2010.15003v2)

Published 28 Oct 2020 in cs.LG and cs.NE

Abstract: Universal approximation theorem suggests that a shallow neural network can approximate any function. The input to neurons at each layer is a weighted sum of previous layer neurons and then an activation is applied. These activation functions perform very well when the output is a linear combination of input data. When trying to learn a function which involves product of input data, the neural networks tend to overfit the data to approximate the function. In this paper we will use properties of logarithmic functions to propose a pair of activation functions which can translate products into linear expression and learn using backpropagation. We will try to generalize this approach for some complex arithmetic functions and test the accuracy on a disjoint distribution with the training set.

Summary

We haven't generated a summary for this paper yet.