Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skill Induction and Planning with Latent Language (2110.01517v2)

Published 4 Oct 2021 in cs.LG, cs.AI, cs.CL, cs.CV, and cs.RO

Abstract: We present a framework for learning hierarchical policies from demonstrations, using sparse natural language annotations to guide the discovery of reusable skills for autonomous decision-making. We formulate a generative model of action sequences in which goals generate sequences of high-level subtask descriptions, and these descriptions generate sequences of low-level actions. We describe how to train this model using primarily unannotated demonstrations by parsing demonstrations into sequences of named high-level subtasks, using only a small number of seed annotations to ground language in action. In trained models, natural language commands index a combinatorial library of skills; agents can use these skills to plan by generating high-level instruction sequences tailored to novel goals. We evaluate this approach in the ALFRED household simulation environment, providing natural language annotations for only 10% of demonstrations. It achieves task completion rates comparable to state-of-the-art models (outperforming several recent methods with access to ground-truth plans during training and evaluation) while providing structured and human-readable high-level plans.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Pratyusha Sharma (15 papers)
  2. Antonio Torralba (178 papers)
  3. Jacob Andreas (116 papers)
Citations (102)