Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Words that almost commute (2110.01120v2)

Published 3 Oct 2021 in math.CO and cs.DM

Abstract: The \emph{Hamming distance} $\text{ham}(u,v)$ between two equal-length words $u$, $v$ is the number of positions where $u$ and $v$ differ. The words $u$ and $v$ are said to be \emph{conjugates} if there exist non-empty words $x,y$ such that $u=xy$ and $v=yx$. The smallest value $\text{ham}(xy,yx)$ can take on is $0$, when $x$ and $y$ commute. But, interestingly, the next smallest value $\text{ham}(xy,yx)$ can take on is $2$ and not $1$. In this paper, we consider conjugates $u=xy$ and $v=yx$ where $\text{ham}(xy,yx)=2$. More specifically, we provide an efficient formula to count the number $h(n)$ of length-$n$ words $u=xy$ over a $k$-letter alphabet that have a conjugate $v=yx$ such that $\text{ham}(xy,yx)=2$. We also provide efficient formulae for other quantities closely related to $h(n)$. Finally, we show that there is no one easily-expressible good bound on the growth of $h(n)$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)