Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random sections of $\ell_p$-ellipsoids, optimal recovery and Gelfand numbers of diagonal operators (2109.14504v2)

Published 29 Sep 2021 in math.FA, cs.NA, math.NA, and math.PR

Abstract: We study the circumradius of a random section of an $\ell_p$-ellipsoid, $0<p\le \infty$, and compare it with the minimal circumradius over all sections with subspaces of the same codimension. Our main result is an upper bound for random sections, which we prove using techniques from asymptotic geometric analysis if $1\leq p \leq \infty$ and compressed sensing if $0<p \leq 1$. This can be interpreted as a bound on the quality of random (Gaussian) information for the recovery of vectors from an $\ell_p$-ellipsoid for which the radius of optimal information is given by the Gelfand numbers of a diagonal operator. In the case where the semiaxes decay polynomially and $1\le p\le \infty$, we conjecture that, as the amount of information increases, the radius of random information either decays like the radius of optimal information or is bounded from below by a constant, depending on whether the exponent of decay is larger than the critical value $1-\frac{1}{p}$ or not. If $1\leq p\leq 2$, we prove this conjecture by providing a matching lower bound. This extends the recent work of Hinrichs et al. [Random sections of ellipsoids and the power of random information, Trans. Amer. Math. Soc., 2021+] for the case $p=2$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.