Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Predicting Dynamics of Transmon Qubit-Cavity Systems with Recurrent Neural Networks (2109.14471v1)

Published 29 Sep 2021 in cond-mat.dis-nn and quant-ph

Abstract: Developing accurate and computationally inexpensive models for the dynamics of open-quantum systems is critical in designing new qubit platforms by first understanding their mechanisms of decoherence and dephasing. Current models based on solutions to master equations are not sufficient in capturing the non-Markovian dynamics at play and suffer from large computational costs. Here, we present a method of overcoming this by using a recurrent neural network to obtain effective solutions to the Lindblad master equation for a coupled transmon qubit-cavity system. We present the training and testing performance of the model trained a simulated dataset and demonstrate its ability to map microscopic dissipative mechanisms to quantum observables.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube