Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Joint Estimation of Multiple RF Impairments Using Deep Multi-Task Learning (2109.14321v1)

Published 29 Sep 2021 in eess.SP

Abstract: Radio-frequency (RF) front-end forms a critical part of any radio system, defining its cost as well as communication performance. However, these components frequently exhibit non-ideal behavior, referred to as impairments, due to the imperfections in the manufacturing/design process. Most of the designers rely on simplified closed-form models to estimate these impairments. On the other hand, these models do not holistically or accurately capture the effects of real-world RF front-end components. Recently, machine learning-based algorithms have been proposed to estimate these impairments. However, these algorithms are not capable of estimating multiple RF impairments jointly, which leads to limited estimation accuracy. In this paper, the joint estimation of multiple RF impairments by exploiting the relationship between them is proposed. To do this, a deep multi-task learning-based algorithm is designed. Extensive simulation results reveal that the performance of the proposed joint RF impairments estimation algorithm is superior to the conventional individual estimations in terms of mean-square error. Moreover, the proposed algorithm removes the need of training multiple models for estimating the different impairments.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.