Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Mutation Rates for the $(1+λ)$ EA on OneMax (2006.11457v1)

Published 20 Jun 2020 in cs.NE

Abstract: The OneMax problem, alternatively known as the Hamming distance problem, is often referred to as the "drosophila of evolutionary computation (EC)", because of its high relevance in theoretical and empirical analyses of EC approaches. It is therefore surprising that even for the simplest of all mutation-based algorithms, Randomized Local Search and the (1+1) EA, the optimal mutation rates were determined only very recently, in a GECCO 2019 poster. In this work, we extend the analysis of optimal mutation rates to two variants of the $(1+\lambda)$ EA and to the $(1+\lambda)$ RLS. To do this, we use dynamic programming and, for the $(1+\lambda)$ EA, numeric optimization, both requiring $\Theta(n3)$ time for problem dimension $n$. With this in hand, we compute for all population sizes $\lambda \in {2i \mid 0 \le i \le 18}$ and for problem dimension $n \in {1000, 2000, 5000}$ which mutation rates minimize the expected running time and which ones maximize the expected progress. Our results do not only provide a lower bound against which we can measure common evolutionary approaches, but we also obtain insight into the structure of these optimal parameter choices. For example, we show that, for large population sizes, the best number of bits to flip is not monotone in the distance to the optimum. We also observe that the expected remaining running time are not necessarily unimodal for the $(1+\lambda)$ EA$_{0 \rightarrow 1}$ with shifted mutation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Maxim Buzdalov (18 papers)
  2. Carola Doerr (117 papers)
Citations (22)

Summary

We haven't generated a summary for this paper yet.