Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting Attentive Social Temporal Excitation for Sequential Recommendation (2109.13539v1)

Published 28 Sep 2021 in cs.SI, cs.AI, and cs.IR

Abstract: In collaborative filtering, it is an important way to make full use of social information to improve the recommendation quality, which has been proved to be effective because user behavior will be affected by her friends. However, existing works leverage the social relationship to aggregate user features from friends' historical behavior sequences in a user-level indirect paradigm. A significant defect of the indirect paradigm is that it ignores the temporal relationships between behavior events across users. In this paper, we propose a novel time-aware sequential recommendation framework called Social Temporal Excitation Networks (STEN), which introduces temporal point processes to model the fine-grained impact of friends' behaviors on the user s dynamic interests in an event-level direct paradigm. Moreover, we propose to decompose the temporal effect in sequential recommendation into social mutual temporal effect and ego temporal effect. Specifically, we employ a social heterogeneous graph embedding layer to refine user representation via structural information. To enhance temporal information propagation, STEN directly extracts the fine-grained temporal mutual influence of friends' behaviors through the mutually exciting temporal network. Besides, the user s dynamic interests are captured through the self-exciting temporal network. Extensive experiments on three real-world datasets show that STEN outperforms state-of-the-art baseline methods. Moreover, STEN provides event-level recommendation explainability, which is also illustrated experimentally.

Citations (14)

Summary

We haven't generated a summary for this paper yet.