Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation (2405.20878v1)

Published 31 May 2024 in cs.IR and cs.AI

Abstract: Sequential recommendation effectively addresses information overload by modeling users' temporal and sequential interaction patterns. To overcome the limitations of supervision signals, recent approaches have adopted self-supervised learning techniques in recommender systems. However, there are still two critical challenges that remain unsolved. Firstly, existing sequential models primarily focus on long-term modeling of individual interaction sequences, overlooking the valuable short-term collaborative relationships among the behaviors of different users. Secondly, real-world data often contain noise, particularly in users' short-term behaviors, which can arise from temporary intents or misclicks. Such noise negatively impacts the accuracy of both graph and sequence models, further complicating the modeling process. To address these challenges, we propose a novel framework called Self-Supervised Graph Neural Network (SelfGNN) for sequential recommendation. The SelfGNN framework encodes short-term graphs based on time intervals and utilizes Graph Neural Networks (GNNs) to learn short-term collaborative relationships. It captures long-term user and item representations at multiple granularity levels through interval fusion and dynamic behavior modeling. Importantly, our personalized self-augmented learning structure enhances model robustness by mitigating noise in short-term graphs based on long-term user interests and personal stability. Extensive experiments conducted on four real-world datasets demonstrate that SelfGNN outperforms various state-of-the-art baselines. Our model implementation codes are available at https://github.com/HKUDS/SelfGNN.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yuxi Liu (25 papers)
  2. Lianghao Xia (65 papers)
  3. Chao Huang (244 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com