Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Optimising for Interpretability: Convolutional Dynamic Alignment Networks (2109.13004v2)

Published 27 Sep 2021 in stat.ML, cs.CV, and cs.LG

Abstract: We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA Nets), which are performant classifiers with a high degree of inherent interpretability. Their core building blocks are Dynamic Alignment Units (DAUs), which are optimised to transform their inputs with dynamically computed weight vectors that align with task-relevant patterns. As a result, CoDA Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions. Given the alignment of the DAUs, the resulting contribution maps align with discriminative input patterns. These model-inherent decompositions are of high visual quality and outperform existing attribution methods under quantitative metrics. Further, CoDA Nets constitute performant classifiers, achieving on par results to ResNet and VGG models on e.g. CIFAR-10 and TinyImagenet. Lastly, CoDA Nets can be combined with conventional neural network models to yield powerful classifiers that more easily scale to complex datasets such as Imagenet whilst exhibiting an increased interpretable depth, i.e., the output can be explained well in terms of contributions from intermediate layers within the network.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.