Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Probability Distribution on Full Rooted Trees (2109.12825v4)

Published 27 Sep 2021 in stat.ML, cs.DM, and cs.LG

Abstract: The recursive and hierarchical structure of full rooted trees is applicable to represent statistical models in various areas, such as data compression, image processing, and machine learning. In most of these cases, the full rooted tree is not a random variable; as such, model selection to avoid overfitting becomes problematic. A method to solve this problem is to assume a prior distribution on the full rooted trees. This enables the optimal model selection based on the Bayes decision theory. For example, by assigning a low prior probability to a complex model, the maximum a posteriori estimator prevents the selection of the complex one. Furthermore, we can average all the models weighted by their posteriors. In this paper, we propose a probability distribution on a set of full rooted trees. Its parametric representation is suitable for calculating the properties of our distribution using recursive functions, such as the mode, expectation, and posterior distribution. Although such distributions have been proposed in previous studies, they are only applicable to specific applications. Therefore, we extract their mathematically essential components and derive new generalized methods to calculate the expectation, posterior distribution, etc.

Citations (14)

Summary

We haven't generated a summary for this paper yet.