Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Characterizations of some groups in terms of centralizers (2109.10530v2)

Published 22 Sep 2021 in math.GR

Abstract: A group $G$ is said to be $n$-centralizer if its number of element centralizers $\mid \Cent(G)\mid=n$, an F-group if every non-central element centralizer contains no other element centralizer and a CA-group if all non-central element centralizers are abelian. For any non-abelian $n$-centralizer group $G$, we prove that $\mid \frac{G}{Z(G)}\mid \leq (n-2)2$, if $n \leq 12$ and $\mid \frac{G}{Z(G)}\mid \leq 2(n-4){{log}_2{(n-4)}}$ otherwise, which improves an earlier result. We prove that if $G$ is an arbitrary non-abelian $n$-centralizer F-group, then gcd$(n-2, \mid \frac{G}{Z(G)}\mid) \neq 1$. For a finite F-group $G$, we show that $\mid \Cent(G)\mid \geq \frac{\mid G \mid}{2}$ iff $G \cong A_4 $, an extraspecial $2$-group or a Frobenius group with abelian kernel and complement of order $2$. Among other results, for a finite group $G$ with non-trivial center, it is proved that $\mid \Cent(G)\mid = \frac{\mid G \mid }{2}$ iff $G$ is an extraspecial $2$-group. We give a family of F-groups which are not CA-groups and extend an earlier result.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)