Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Efficient Variational Graph Autoencoders for Unsupervised Cross-domain Prerequisite Chains (2109.08722v5)

Published 17 Sep 2021 in cs.LG and cs.CL

Abstract: Prerequisite chain learning helps people acquire new knowledge efficiently. While people may quickly determine learning paths over concepts in a domain, finding such paths in other domains can be challenging. We introduce Domain-Adversarial Variational Graph Autoencoders (DAVGAE) to solve this cross-domain prerequisite chain learning task efficiently. Our novel model consists of a variational graph autoencoder (VGAE) and a domain discriminator. The VGAE is trained to predict concept relations through link prediction, while the domain discriminator takes both source and target domain data as input and is trained to predict domain labels. Most importantly, this method only needs simple homogeneous graphs as input, compared with the current state-of-the-art model. We evaluate our model on the LectureBankCD dataset, and results show that our model outperforms recent graph-based benchmarks while using only 1/10 of graph scale and 1/3 computation time.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.