Papers
Topics
Authors
Recent
Search
2000 character limit reached

Contrastive Quantization with Code Memory for Unsupervised Image Retrieval

Published 11 Sep 2021 in cs.CV, cs.AI, and cs.IR | (2109.05205v2)

Abstract: The high efficiency in computation and storage makes hashing (including binary hashing and quantization) a common strategy in large-scale retrieval systems. To alleviate the reliance on expensive annotations, unsupervised deep hashing becomes an important research problem. This paper provides a novel solution to unsupervised deep quantization, namely Contrastive Quantization with Code Memory (MeCoQ). Different from existing reconstruction-based strategies, we learn unsupervised binary descriptors by contrastive learning, which can better capture discriminative visual semantics. Besides, we uncover that codeword diversity regularization is critical to prevent contrastive learning-based quantization from model degeneration. Moreover, we introduce a novel quantization code memory module that boosts contrastive learning with lower feature drift than conventional feature memories. Extensive experiments on benchmark datasets show that MeCoQ outperforms state-of-the-art methods. Code and configurations are publicly available at https://github.com/gimpong/AAAI22-MeCoQ.

Citations (43)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.