Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Triplet Quantization (1902.00153v1)

Published 1 Feb 2019 in cs.CV

Abstract: Deep hashing establishes efficient and effective image retrieval by end-to-end learning of deep representations and hash codes from similarity data. We present a compact coding solution, focusing on deep learning to quantization approach that has shown superior performance over hashing solutions for similarity retrieval. We propose Deep Triplet Quantization (DTQ), a novel approach to learning deep quantization models from the similarity triplets. To enable more effective triplet training, we design a new triplet selection approach, Group Hard, that randomly selects hard triplets in each image group. To generate compact binary codes, we further apply a triplet quantization with weak orthogonality during triplet training. The quantization loss reduces the codebook redundancy and enhances the quantizability of deep representations through back-propagation. Extensive experiments demonstrate that DTQ can generate high-quality and compact binary codes, which yields state-of-the-art image retrieval performance on three benchmark datasets, NUS-WIDE, CIFAR-10, and MS-COCO.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Bin Liu (441 papers)
  2. Yue Cao (147 papers)
  3. Mingsheng Long (110 papers)
  4. Jianmin Wang (119 papers)
  5. Jingdong Wang (236 papers)
Citations (93)