Papers
Topics
Authors
Recent
Search
2000 character limit reached

Refinement of Hottopixx Method for Nonnegative Matrix Factorization Under Noisy Separability

Published 7 Sep 2021 in cs.LG, cs.NA, and math.NA | (2109.02863v2)

Abstract: Hottopixx, proposed by Bittorf et al. at NIPS 2012, is an algorithm for solving nonnegative matrix factorization (NMF) problems under the separability assumption. Separable NMFs have important applications, such as topic extraction from documents and unmixing of hyperspectral images. In such applications, the robustness of the algorithm to noise is the key to the success. Hottopixx has been shown to be robust to noise, and its robustness can be further enhanced through postprocessing. However, there is a drawback. Hottopixx and its postprocessing require us to estimate the noise level involved in the matrix we want to factorize before running, since they use it as part of the input data. The noise-level estimation is not an easy task. In this paper, we overcome this drawback. We present a refinement of Hottopixx and its postprocessing that runs without prior knowledge of the noise level. We show that the refinement has almost the same robustness to noise as the original algorithm.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.