Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring Nonnegative Matrices (1211.6687v4)

Published 28 Nov 2012 in stat.ML, cs.LG, cs.NA, and math.OC

Abstract: Although nonnegative matrix factorization (NMF) is NP-hard in general, it has been shown very recently that it is tractable under the assumption that the input nonnegative data matrix is close to being separable (separability requires that all columns of the input matrix belongs to the cone spanned by a small subset of these columns). Since then, several algorithms have been designed to handle this subclass of NMF problems. In particular, Bittorf, Recht, R\'e and Tropp (`Factoring nonnegative matrices with linear programs', NIPS 2012) proposed a linear programming model, referred to as Hottopixx. In this paper, we provide a new and more general robustness analysis of their method. In particular, we design a provably more robust variant using a post-processing strategy which allows us to deal with duplicates and near duplicates in the dataset.

Citations (49)

Summary

We haven't generated a summary for this paper yet.