Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Perform Downlink Channel Estimation in Massive MIMO Systems (2109.02463v1)

Published 6 Sep 2021 in cs.IT, cs.AI, and math.IT

Abstract: We study downlink (DL) channel estimation in a multi-cell Massive multiple-input multiple-output (MIMO) system operating in a time-division duplex. The users must know their effective channel gains to decode their received DL data signals. A common approach is to use the mean value as the estimate, motivated by channel hardening, but this is associated with a substantial performance loss in non-isotropic scattering environments. We propose two novel estimation methods. The first method is model-aided and utilizes asymptotic arguments to identify a connection between the effective channel gain and the average received power during a coherence block. The second one is a deep-learning-based approach that uses a neural network to identify a mapping between the available information and the effective channel gain. We compare the proposed methods against other benchmarks in terms of normalized mean-squared error and spectral efficiency (SE). The proposed methods provide substantial improvements, with the learning-based solution being the best of the considered estimators.

Citations (1)

Summary

We haven't generated a summary for this paper yet.