Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (2109.02288v2)

Published 6 Sep 2021 in cs.CV

Abstract: Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. This approach has successfully been demonstrated by a recent work of Wu et al. (2020), which obtained impressive 3D reconstruction networks with unsupervised learning. However, their algorithm is only applicable to symmetric objects. In this paper, we eliminate the symmetry requirement with a novel unsupervised algorithm that can learn a 3D reconstruction network from a multi-image dataset. Our algorithm is more general and covers the symmetry-required scenario as a special case. Besides, we employ a novel albedo loss that improves the reconstructed details and realisticity. Our method surpasses the previous work in both quality and robustness, as shown in experiments on datasets of various structures, including single-view, multi-view, image-collection, and video sets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Long-Nhat Ho (3 papers)
  2. Anh Tuan Tran (17 papers)
  3. Quynh Phung (5 papers)
  4. Minh Hoai (48 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.