Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The asymptotic distribution of the condition number for random circulant matrices (2109.02282v3)

Published 6 Sep 2021 in math.PR, cs.NA, and math.NA

Abstract: In this manuscript, we study the limiting distribution for the joint law of the largest and the smallest singular values for random circulant matrices with generating sequence given by independent and identically distributed random elements satisfying the so-called Lyapunov condition. Under an appropriated normalization, the joint law of the extremal singular values converges in distribution, as the matrix dimension tends to infinity, to an independent product of Rayleigh and Gumbel laws. The latter implies that a normalized condition number converges in distribution to a Fr\'echet law as the dimension of the matrix increases.

Citations (6)

Summary

We haven't generated a summary for this paper yet.