Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singular value correlation functions for products of Wishart random matrices (1303.5694v5)

Published 22 Mar 2013 in math-ph, cond-mat.stat-mech, cs.IT, math.IT, and math.MP

Abstract: Consider the product of $M$ quadratic random matrices with complex elements and no further symmetry, where all matrix elements of each factor have a Gaussian distribution. This generalises the classical Wishart-Laguerre Gaussian Unitary Ensemble with M=1. In this paper we first compute the joint probability distribution for the singular values of the product matrix when the matrix size $N$ and the number $M$ are fixed but arbitrary. This leads to a determinantal point process which can be realised in two different ways. First, it can be written as a one-matrix singular value model with a non-standard Jacobian, or second, for $M\geq2$, as a two-matrix singular value model with a set of auxiliary singular values and a weight proportional to the Meijer $G$-function. For both formulations we determine all singular value correlation functions in terms of the kernels of biorthogonal polynomials which we explicitly construct. They are given in terms of hypergeometric and Meijer $G$-functions, generalising the Laguerre polynomials. Our investigation was motivated from applications in telecommunication of multi-layered scattering MIMO channels. We present the ergodic mutual information for finite-$N$ for such a channel model with $M-1$ layers of scatterers as an example.

Citations (125)

Summary

We haven't generated a summary for this paper yet.